Z-DNA: the long road to biological function (2024)

References

  1. Wang, A. H. J. et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686 (1979).

    Article CAS Google Scholar

  2. Pohl, F. M. & Jovin, T. M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC). J. Mol. Biol. 67, 375–396 (1972).

    Article CAS Google Scholar

  3. Thamann, T. J., Lord, R. C., Wang, A. H. J. & Rich, A. High salt form of poly(dG-dC)·poly(dG-dC) is left handed Z-DNA: raman spectra of crystals and solutions. Nucl. Acids Res. 9, 5443–5457 (1981).

    Article CAS Google Scholar

  4. Behe, M. & Felsenfeld, G. Effects of methylation on a synthetic polynucleotide: the B–Z transition in poly(dG–m5dC)·poly(dG–m5dC). Proc. Natl Acad. Sci. USA 78, 1619–1623 (1981).

    Article CAS Google Scholar

  5. Rich, A., Nordheim, A. & Wang, A. H. -J. The chemistry and biology of left-handed Z-DNA. Ann. Rev. Biochem. 53, 791–846 (1984).

    Article CAS Google Scholar

  6. Nordheim, A. & Rich, A. The sequence (dC–dA)n·(dG–dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. Proc. Natl Acad. Sci. USA 80, 1821–1825 (1983).

    Article CAS Google Scholar

  7. Haniford, D. B. & Pulleyblank, D. E. Facile transition of poly[d(TG) x d(CA)] into a left-handed helix in physiological conditions. Nature 302, 632–634 (1983).

    Article CAS Google Scholar

  8. Feigon, J., Wang, A. H. -J., van der Marel, G. A., van Boom, J. H. & Rich, A. Z-DNA forms without an alternating purine–pyrimidine sequence in solution. Science 230, 82–84 (1985).

    Article CAS Google Scholar

  9. Peck, L. J., Nordheim, A., Rich, A. & Wang, J. C. Flipping of cloned d(pGpG)n·d(pCpG)n DNA sequences from right to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc. Natl Acad. Sci. USA 79, 4560–4564 (1982).

    Article CAS Google Scholar

  10. Haniford, D. B. & Pulleyblank, D. E. The in vivo occurrence of Z-DNA. J. Biomol. Struct. Dyn. 1, 593–609 (1983).

    Article CAS Google Scholar

  11. Ellison, M. J., Kelleher, R. J., Wang, A. H. -J., Habener, J. F. & Rich, A. Sequence-dependent energetics of the B–Z transition in supercoiled DNA containing nonalternating purine–pyrimidine sequences. Proc. Natl Acad. Sci. USA 82, 8320–8324 (1985).

    Article CAS Google Scholar

  12. Ho, P. S., Ellison, M. J., Quigley, G. J. & Rich, A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J. 5, 2737–2744 (1986).

    Article CAS Google Scholar

  13. Marx, J. Z-DNA: still searching for a function. Science 230, 794–796 (1985).

    Article CAS Google Scholar

  14. Lafer, E. M., Moller, A., Nordheim, A., Stollar, B. D. & Rich, A. Antibodies specific for left-handed DNA. Proc. Natl Acad. Sci. USA 78, 3546–3550 (1981).

    Article CAS Google Scholar

  15. Moller, A. et al. Monoclonal antibodies recognize different parts of Z-DNA. J. Biol. Chem. 257, 12081–12085 (1982).

    CAS PubMed Google Scholar

  16. Lafer, E. M. et al. Z-DNA specific antibodies in human systemic lupus erythematosus. J. Clin. Invest. 71, 314–321 (1983).

    Article CAS Google Scholar

  17. Nordheim, A. et al. Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294, 417–422 (1981).

    Article CAS Google Scholar

  18. Lancillotti, F., Lopez, M. C., Arias, P. & Alonso, C. Z-DNA in transcriptionally active chromosomes. Proc. Natl Acad. Sci. USA 84, 1560–1564 (1987).

    Article CAS Google Scholar

  19. Arndt-Jovin, D. J. et al. Left-handed Z-DNA in bands of acid-fixed polytene chromosomes. Proc. Natl Acad. Sci. USA 80, 4344–4348 (1983).

    Article CAS Google Scholar

  20. Lipps, H. J. et al. Antibodies against Z-DNA react with the macronucleus but not the micronucleus of the hypotrichous ciliate Stylonychia mytilus. Cell 32, 435–441 (1983).

    Article CAS Google Scholar

  21. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article CAS Google Scholar

  22. Schroth, G. P., Chou, P. -J. & Ho, P. S. Mapping Z-DNA in the human genome: computer aided mapping reveals a non-random distribution of potential Z-DNA forming sequences in human genes. J. Biol. Chem. 267, 11846–11855 (1992).

    CAS PubMed Google Scholar

  23. Jackson, D. A., Yuan, J. & Cook, P. R. A gentle method for preparing cyto- and nucleo-skeletons and associated chromatin. J. Cell Sci. 90, 365–378 (1988).

    CAS PubMed Google Scholar

  24. Wittig, B., Dorbic, T. & Rich, A. The level of Z-DNA in metabolically active, permeabilized mammalian cell nuclei is regulated by torsional strain. J. Cell. Biol. 108, 755–764 (1989).

    Article CAS Google Scholar

  25. Wittig, B., Dorbic, T. & Rich, A. Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. Proc. Natl Acad. Sci. USA 88, 2259–2263 (1991).

    Article CAS Google Scholar

  26. Wittig, B., Wolfl, S., Dorbic, T., Vahrson, W. & Rich, A. Transcription of human C-MYC in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. EMBO J. 11, 4653–4663 (1992).

    Article CAS Google Scholar

  27. Wolfl, S., Wittig, B. & Rich, A. Identification of transcriptionally induced Z-DNA segments in the human C-MYC gene. Biochim. Biophys. Acta 1264, 294–302 (1995).

    Article CAS Google Scholar

  28. Wolfl, S., Martinez, C., Rich, A. & Majzoub, J. A. Transcription of the human corticotropin-releasing hormone gene in NPLC cells is correlated with Z-DNA formation. Proc. Natl Acad. Sci. USA 93, 3664–3668 (1996).

    Article CAS Google Scholar

  29. Liu, R. et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106, 309–318 (2001).

    Article CAS Google Scholar

  30. Garner, M. M. & Felsenfeld, G. Effect of Z-DNA on nucleosome placement. J. Mol. Biol. 196, 581–590 (1987).

    Article CAS Google Scholar

  31. Herbert, A. G. & Rich, A. A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide. Nucl. Acids Res. 21, 2669–2672 (1993).

    Article CAS Google Scholar

  32. Herbert, A., Lowenhaupt, K., Spitzner, J. & Rich, A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc. Natl Acad. Sci. USA 92, 7550–7554 (1995).

    Article CAS Google Scholar

  33. Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article CAS Google Scholar

  34. Herbert, A. et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl Acad. Sci. USA 94, 8421–8426 (1997).

    Article CAS Google Scholar

  35. Kim, Y. -G., Kim, P. S., Herbert, A. & Rich, A. Construction of a Z-DNA-specific restriction endonuclease. Proc. Natl Acad. Sci. USA 94, 12875–12879 (1997).

    Article CAS Google Scholar

  36. Kim, Y. G., Lowenhaupt, K., Schwartz, T. & Rich, A. The interaction between Z-DNA and the Zab domain of dsRNA adenosine deaminase characterized using fusion nucleases. J. Biol. Chem. 274, 19081–19086 (1999).

    Article CAS Google Scholar

  37. Berger, I. et al. Spectroscopic characterization of a DNA-binding domain, Zα, from the editing enzyme dsRNA adenosine deaminase: evidence for left-handed Z-DNA in the Zα-DNA complex. Biochemistry 37, 13313–13321 (1998).

    Article CAS Google Scholar

  38. Kim, Y. -G. et al. The Zab domain of the human RNA editing enzyme ADAR1 recognizes Z-DNA when surrounded by B-DNA. J. Biol. Chem. 275, 26828–26833 (2000).

    CAS PubMed Google Scholar

  39. Oh, D. -B., Kim, Y. -G. & Rich, A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc. Natl Acad. Sci. USA 99, 16666–16671 (2002).

    Article CAS Google Scholar

  40. Schwartz, T., Rould, M. A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article CAS Google Scholar

  41. Herbert, A. & Rich, A. Role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc. Natl Acad. Sci. USA 98, 12132–12137 (2001).

    Article CAS Google Scholar

  42. Fu, Y. et al. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene 240, 157–163 (1999).

    Article CAS Google Scholar

  43. Schwartz, T., Behlke, J., Lowenhaupt, K., Heinemann, U. & Rich, A. Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nature Struct. Biol. 8, 761–765 (2001).

    Article CAS Google Scholar

  44. Brandt, T. A. & Jacobs, B. L. Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L are required for pathogenesis in a mouse model. J. Virol. 75, 850–856 (2001).

    Article CAS Google Scholar

  45. Kim, Y. -G. et al. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc. Natl Acad. Sci. USA 100, 6974–6979 (2003).

    Article CAS Google Scholar

  46. Zhang, S., Lockshin, C., Herbert, A., Winter, E. & Rich, A. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J. 11, 3787–3796 (1992).

    Article CAS Google Scholar

  47. Zhang, S., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl Acad. Sci. USA 90, 3334–3338 (1993).

    Article CAS Google Scholar

  48. Zhang, S. et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393 (1995).

    Article Google Scholar

  49. Holmes, T., Delacalle, S., Su, X., Rich, A. & Zhang, S. Extensive neurite outgrowth and active neuronal synapses on peptide scaffolds. Proc. Natl Acad. Sci. USA 97, 6728–6733 (2000).

    Article CAS Google Scholar

  50. Kisiday, J. et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl Acad. Sci. USA 99, 9996–10001 (2002).

    Article CAS Google Scholar

  51. Zhang, S. & Rich, A. Direct conversion of an oligopeptide from a β-sheet to an α-helix: a model for amyloid formation. Proc. Natl Acad. Sci. USA 94, 23–28 (1997).

    Article CAS Google Scholar

  52. Zhang, S. et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials 20, 1213–1220 (1999).

    Article CAS Google Scholar

  53. Vauthey, S., Santoso, S., Gong, H., Watson, N. & Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA 99, 5355–5360 (2002).

    Article CAS Google Scholar

  54. von Maltzahn, G., Vauthey, S., Santoso, S. & Zhang, S. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19, 4332–4337 (2003).

    Article CAS Google Scholar

  55. Zhang, S. Building from bottom-up. Materials Today 6, 20–27 (2003).

    Article CAS Google Scholar

  56. Uesugi, W., Shida, T. & Ikehara, M. Synthesis and properties of CpG analogues containing an 8-bromoguanosine residue. Evidence for Z-RNA duplex formation. Biochemistry 21, 3400–3408 (1982).

    Article CAS Google Scholar

  57. Hall, K., Cruz, P., Tinoko, I., Jovin, T. M. & van de Sande, J. H. 'Z-RNA' — a left-handed RNA double helix. Nature 311, 584–586 (1984).

    Article CAS Google Scholar

  58. Davis, P. W., Hall, K., Cruz, P., Tinoco, I. & Neilson, T. The tetraribonucleotide rCpGpCpG forms a left-handed Z-RNA double helix. Nucleic Acids Res. 14, 1279–1291 (1986).

    Article CAS Google Scholar

  59. Teng, M. K., Liaw, Y. C., van der Marel, G. A., van Boom, J. H. & Wang, A. -H. Effects of the O2' hydroxyl group on Z-DNA conformation: structure of Z-RNA and (araC)-[Z-DNA]. Biochemistry 28, 4923–4928 (1989).

    Article CAS Google Scholar

  60. Davis, P. W., Adamiak, R. W. & Tinoco, I. Z-RNA: the solution NMR structure of r(CGCGCG). Biopolymers 29, 109–122 (1990).

    Article CAS Google Scholar

  61. Hardin, C. C., Zarling, D. A., Wolk, S. K., Ross, W. S. & Tincoc, I. Characterization of anti-Z-RNA polyclonal antibodies: epitope properties and recognition of Z-DNA. Biochemistry 27, 4169–4177 (1988).

    Article CAS Google Scholar

  62. Zarling, D. A., Calhoun, C. J., Hardin, C. C. & Zarling, A. H. Cytoplasmic Z-RNA. Proc. Natl Acad. Sci. USA 84, 6117–6121 (1987).

    Article CAS Google Scholar

  63. Zarling, D. A., Calhoun, C. J., Feuerstein, B. G. & Sena, E. P. Cytoplasmic microinjection of immunoglobulin Gs recognizing RNA helices inhibits human cell growth. J. Mol. Biol. 211, 147–160 (1990).

    Article CAS Google Scholar

  64. Brown, B. A., Lowenhaupt, K., Wilbert, C. M., Hanlon, C. B. & Rich, A. The Za domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc. Natl Acad. Sci. USA 97, 13532–13586 (2000).

    Article CAS Google Scholar

Download references

Z-DNA: the long road to biological function (2024)
Top Articles
Latest Posts
Article information

Author: Catherine Tremblay

Last Updated:

Views: 6358

Rating: 4.7 / 5 (47 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Catherine Tremblay

Birthday: 1999-09-23

Address: Suite 461 73643 Sherril Loaf, Dickinsonland, AZ 47941-2379

Phone: +2678139151039

Job: International Administration Supervisor

Hobby: Dowsing, Snowboarding, Rowing, Beekeeping, Calligraphy, Shooting, Air sports

Introduction: My name is Catherine Tremblay, I am a precious, perfect, tasty, enthusiastic, inexpensive, vast, kind person who loves writing and wants to share my knowledge and understanding with you.